From space propulsion to lighting to surgical anesthesia, the applications and needs for xenon gas are growing. And the good news is that researchers are advancing the science to more easily remove xenon from waste streams and collect the low amounts of it found in the atmosphere.
Researchers at the Department of Energy's Pacific Northwest National Laboratory are at the forefront of research developing porous nanoscale materials to capture xenon. They report in the journal Chem this month, that inexpensive materials called metal-organic frameworks have been very successful in separating the gas in a way that may make it far less expensive than existing means of producing it.
Currently, industry uses a common but expensive process called cryogenic distillation to separate xenon from other gases or the atmosphere. In that costly process, a lot of energy is used to chill entire gas streams down to far below freezing in order to concentrate the xenon.
Key data points: The growth forecast = 6.6% annually for the next 7 years. Scroll below to get more insights. This market report covers trends, opportunities and forecasts in smart oilfield market to 2031 by component (hardware, software, and services), technology (internet of things, artificial intelligence & machine learning, cloud computing, data analytics, and automation & remote monitoring), application (upstream activities, midstream activities, and downstream activities), end use (independent oil & gas operators, national oil companies, international oil companies, service companies, government & regulatory bodies, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)
Download free sample pages"The process we've demonstrated to selectively trap xenon in a MOF can be done at room temperature," said Praveen Thallapally, a materials scientist at PNNL and a corresponding author on the paper. "You pass a mixed gas stream over the MOF materials just one time to capture the xenon and it can be stored long term and easily released for industrial applications when you want to use it."
The paper's authors note that xenon would likely be used more if it was more economical to produce. For instance, they point to reports that show xenon is considered a better surgical anesthetic than the existing technology as it is more potent, less risky, more environmentally friendly and potentially recyclable.
Xeon also has applications in lighting, flash lamps, arc lamps, radiation detectors, medical imaging, research imaging with nuclear magnetic resonance, semiconductors, lasers, space propulsion, the search for dark matter and nuclear processing.