GE Research Uses Summit Supercomputer for Groundbreaking Stu
Stay informed with our
free newsletters

This news is classified in: Sustainable Energy Wind

Aug 5, 2020

GE Research Uses Summit Supercomputer for Groundbreaking Study on Wind Power

  • U.S. Department of Energy grants GE supercomputer access at Oak Ridge National Laboratory in Tennessee
  • GE Research will accelerate new advancements in wind power supporting renewable energy
  • Project insights will bolster the DOE's leadership in exascale computing for clean power through collaboration with the National Renewable Energy Laboratory (NREL)

GE scientists have been authorized by the U.S. government to access one of world’s fastest supercomputers to advance offshore wind power, which could be a significant part of the Wind Energy sector that is projected to provide 20% of all U.S. energy needs in the next 10 years.

GE engineers – led by GE Research Aerodynamics Engineer Jing Li – have been granted access to the Summit supercomputer at Oak Ridge National Laboratory (ORNL) in Tennessee, through the U.S. Department of Energy’s (DOE) competitive ALCC (Advanced Scientific Computing Research Leadership Computing Challenge) program. The goal of this groundbreaking effort, just launched, is to use supercomputer-driven simulations to conduct otherwise infeasible research that will lead to improved efficiencies in offshore wind energy production.

“The Summit supercomputer will allow our GE team to run computations that would be otherwise impossible,” said Li. “This research could dramatically accelerate offshore wind power as the future of clean energy and our path to a more sustainable, safe environment.”

Green Hydrogen Market - Global Forecast 2024-2030

Green Hydrogen Market - Global Forecast 2024-2030

by Technology (Alkaline Electrolyzer, Polymer Electrolyte Membrane (PEM) Electrolyzer), Renewable Source (Solar Energy, Wind Energy), Distribution Channel, Application

Download free sample pages

As part of the project, the GE team will work closely with world-class research teams at NREL and ORNL to advance the ExaWind platform. One of the applications of the DOE’s Exascale Computing Project (ECP), ExaWind focuses on the development of computer software to simulate different wind farm and atmospheric flow physics. These simulations provide crucial insights for engineers and scientists to better understand wind dynamics and their impact on wind farms.

Li said, “Scientists at NREL and ORNL are part of a broader team that have built up a tremendous catalog of new software code and technical expertise with ExaWind, and we believe our project can discover critical new insights that support and validate this larger effort.”

Doug Kothe, Director of DOE's Exascale Computing Project (ECP), said, “ExaWind’s development efforts are building progressively from predictive petascale simulations of a single turbine to a multi-turbine array of turbines in complex terrain. The ExaWind goal is to establish a virtual wind plant test bed that aids and accelerates the design and control of wind farms, informing our ability to predict the response of these farms to a given atmospheric condition. ECP is fortunate to have ExaWind in its portfolio of application projects, and fully supports its goals and aggressive development plans, which will not be easy to achieve. But these sort of stretch scientific goals are what ECP is about.”

The key focus of this supercomputing project will be to study coastal low-level jets, which produce a distinct wind velocity profile of potential importance to the design and operation of future wind turbines. Using the Summit supercomputer system, the GE team will run simulations to study and inform new ways of controlling and operating offshore turbines to best optimize wind production.

Hosted by the U.S. Department of Energy’s Oak Ridge National Laboratory, the Summit supercomputing system is one of the world’s most powerful.  With the system power equivalent to 70 million iPhone 11s, Summit provides scientists with incredible computing power to test and solve challenges in energy, AI, human health and other research areas simply unknowable until now.

“We’re now able to study wind patterns that span hundreds of meters in height across tens of kilometers of territory down to the resolution of airflow over individual turbine blades,” Li says. “You simply couldn’t gather and run experiments on this volume and complexity of data without a supercomputer. These simulations allow us to characterize and understand poorly understood phenomena like coastal low-level jets in ways previously not possible.”


General Electric (GE)