$19 M to Improve Efficiency of US Buildings


General News - Jul 15, 2016

The Energy Department announced today it is investing $19 million to improve the efficiency of our nation’s homes, offices, schools, hospitals, restaurants and stores. These projects will develop advanced building technologies that will help American consumers and businesses save money on their utility bills, reduce greenhouse gas emissions, and create jobs.

Buildings are the largest energy consumer in the nation—accounting for more than 40 percent of the nation’s total energy demand and greenhouse emissions, and resulting in an annual energy bill totaling $430 billion. On average, nearly a third of this energy is wasted. It’s estimated that if the U.S. reduced energy use in buildings by 20 percent, the nation could save nearly $80 billion annually on energy bills.


Related Research on ASDReports.com:
Global Activated Carbon Market 2017-2021

Today’s 18 innovative projects will develop sensors and energy modeling tools to make our buildings smarter, reduce refrigerant leaks and improve the efficiency of heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems, and produce a low-impact, gas-powered heat pump that can operate efficiently in colder climates. The projects will also support renewable energy market penetration through energy storage, pinpoint air leaks and reduce energy losses through the building envelope, and cut electricity use by transmitting sunlight to building interiors.

“Improving the efficiency of our nation’s buildings presents one of our best opportunities for cutting Americans’ energy bills and slashing greenhouse gas emissions,” said Secretary of Energy Ernest Moniz. “These innovative technologies will make our buildings smarter, healthier, and more efficient, driving us toward our goal of reducing the energy use intensity of the U.S. buildings sector by 30 percent by 2030.”

The 18 selected projects span multiple technology areas, targeting a variety of building efficiency improvements:

Sensors and Controls

  • Lawrence Berkeley National Laboratory (LBNL) (Berkeley, California) will develop a platform for design and specification of HVAC control sequences that inter-operates with both whole-building energy simulation and automated control implementation. OpenBuildingControl will eliminate the manual translation steps currently associated with HVAC control design, reducing both effort and error.
  • Carnegie Mellon University (Pittsburgh, Pennsylvania) will develop a sensing and control system that can save significant energy by accurately estimating the number of occupants in an area, and then adjusting HVAC operations accordingly. Current HVAC systems waste energy by assuming maximum occupancy in each room.
  • PARC (Palo Alto, California) will develop a wireless system of peel-and-stick sensor nodes that are powered by radio frequency hubs, relaying data to building management systems that can significantly reduce energy use.
  • Clemson University (Clemson, South Carolina) will develop low-cost, digital, plug-and-play, passive radio-frequency identification sensors for measuring indoor and outdoor temperature. These sensors will improve building operations and cut energy costs.
  • The University of California-Berkeley (Berkeley, California) will create a low-cost, open-source, wireless sensor system, which will be integrated with building management systems, their components, and smartphones to enable installation of secure and easily deployed building energy efficiency applications, such as demand response.
  • Oak Ridge National Laboratory (ORNL) (Oak Ridge, Tennessee) will develop system-level architecture for a plug-and-play multi-sensor platform, which can use peel-and-stick sensors less than a quarter of an inch thick that are powered by indoor, high-performance, flexible photovoltaics.
  • SLAC National Accelerator Laboratory (Menlo Park, California) will develop a toolkit for the Department’s open-source VOLTTRON platform, which supports a wide range of building energy management and grid integration applications. The toolkit adds testing and simulation tools to cut costs by as much as 30 percent for systems integration, distributed energy, and microgrid development projects.
  • Columbia University (New York, New York) will use metering and automated personalized feedback to encourage occupants of multifamily buildings to save electricity by reducing appliance use or shifting use to non-peak hours.

Source : Energy Department

Published on Global Energy World: Jul 15, 2016

 

Benelux Infrastructure Forum 2017

Nov 22 - 23, 2017 - Amsterdam, Netherlands

Register More info


zpsk